博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
spark使用
阅读量:6511 次
发布时间:2019-06-24

本文共 28762 字,大约阅读时间需要 95 分钟。

hot3.png

一、spark三种运行方式

1、local单机模式:

./bin/spark-submit --class org.apache.spark.examples.SparkPi --master local[1] ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100

运行结果可以在xshell看见:如图所示

201042_xlye_2995717.png

2、standalone集群模式:

需要的配置项
1, slaves文件   指定从节点的ip

# A Spark Worker will be started on each of the machines listed below.

#localhost
node22    
node33

2, 在spark-env.sh中添加如下信息
export JAVA_HOME=/usr/local/java/jdk
export SPARK_MASTER_IP=node11  #指定主节点的ip
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=1
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_MEMORY=1g

3、把配置好的spark-1.3.1-bin-hadoop2.4文件复制到其他两台机器上

scp -r spark-1.3.1-bin-hadoop2.4/ node22:/usr/local/java/

scp -r spark-1.3.1-bin-hadoop2.4/ node33:/usr/local/java/

 

4、启动spark   在 /usr/local/java/spark-1.3.1-bin-hadoop2.4/sbin文件下执行

命令  [root sbin]# ./start-all.sh 

在浏览器中输入  http://node11:8080/index.htm  出现如下界面表示启动成功

203209_zmYL_2995717.png

standalone集群模式:
之client模式:
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://node11:7077 --executor-memory 1G --total-executor-cores 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100

运行结果可以在xshell看见:如图所示

203238_AJC0_2995717.png

standalone集群模式:
之cluster模式:
结果node11:8080里面可见!
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://node11:7077 --deploy-mode cluster --supervise --executor-memory 1G --total-executor-cores 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100

3、Yarn集群模式:

需要的配置项
1, spark-env.sh
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_HOME=/usr/local/java/spark-1.3.1-bin-hadoop2.4
export SPARK_JAR=/usr/local/java/spark-1.3.1-bin-hadoop2.4/lib/spark-assembly-1.3.1-hadoop2.4.0.jar
export PATH=$SPARK_HOME/bin:$PATH
2, ~/.bash_profile
配置好hadoop环境变量

3、启动zookeeper集群    zookeeper集群安装参考  https://my.oschina.net/xiaozhou18/blog/787132

4、启动hadoop集群     hadoop安装 参考 https://my.oschina.net/xiaozhou18/blog/787902

Yarn集群模式:
client模式:
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-client --executor-memory 1G --num-executors 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100

运行结果可以在xshell看见:如图所示

105011_WVpu_2995717.png

Yarn集群模式:

cluster模式:
结果spark001:8088里面可见!
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster --executor-memory 1G --num-executors 1 ./lib/spark-examples-1.3.1-hadoop2.4.0.jar 100

二、在xshell中写第一个spark的wordcount程序

1、启动spark  xshell

 [root bin]# ./spark-shell --master yarn-client

2、读取文件里的数据  (这个文件要保证在每台节点上都有)

scala> var lines = sc.textFile("file:///usr/local/java/spark-1.3.1-bin-hadoop2.4/README.md")

3、按空格分隔数据

scala> var words=lines.flatMap(_.split(" "))

4、把每个单词作为key     value是1 后面用来做统计单词数量用

scala> var pairs=words.map((_,1))

5、把每个单词计数相加

scala> var result=pairs.reduceByKey(_+_)    

//如果想按照单词出现的次数进行排序  

//用sortByKey

//result.map(x=>x._2->x._1)

//scala>result.sortByKey(false).map(x=>x._2->x._1).collect()

//sortByKey(false)按照key进行升序进行排序

//map(x=>x._2->x._1)  把map中的key,value颠倒位置

//用sortBy

//result.sortBy(_._2,false).collect()  第一个_表示集合中的每个元素   _2表示每个集合中的第二个元素也就是value  false表示按value的升序排序

6、提交job作业  把结果存到hdfs上

scala> result.saveAsTextFile("hdfs://hadoopservice/spark.txt")

7、spark rdd例子

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

三、spark常用算子

#常用Transformation(即转换,延迟加载)

#通过并行化scala集合创建RDD

val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))
#查看该rdd的分区数量
rdd1.partitions.length

val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10))
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x,true)
val rdd3 = rdd2.filter(_>10)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x+"",true)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x.toString,true)

val rdd4 = sc.parallelize(Array("a b c", "d e f", "h i j"))
rdd4.flatMap(_.split(' ')).collect

val rdd5 = sc.parallelize(List(List("a b c", "a b b"),List("e f g", "a f g"), List("h i j", "a a b")))

rdd5.flatMap(_.flatMap(_.split(" "))).collect

#union求并集,注意类型要一致

val rdd6 = sc.parallelize(List(5,6,4,7))
val rdd7 = sc.parallelize(List(1,2,3,4))
val rdd8 = rdd6.union(rdd7)
rdd8.distinct.sortBy(x=>x).collect

#intersection求交集

val rdd9 = rdd6.intersection(rdd7)

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 2), ("kitty", 3)))
val rdd2 = sc.parallelize(List(("jerry", 9), ("tom", 8), ("shuke", 7)))

#join

val rdd3 = rdd1.join(rdd2)
val rdd3 = rdd1.leftOuterJoin(rdd2)
val rdd3 = rdd1.rightOuterJoin(rdd2)

#groupByKey
val rdd3 = rdd1 union rdd2
rdd3.groupByKey
rdd3.groupByKey.map(x=>(x._1,x._2.sum))

#WordCount, 第二个效率低

sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).reduceByKey(_+_).sortBy(_._2,false).collect
sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).groupByKey.map(t=>(t._1, t._2.sum)).collect

#cogroup

val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
val rdd3 = rdd1.cogroup(rdd2)
val rdd4 = rdd3.map(t=>(t._1, t._2._1.sum + t._2._2.sum))

#cartesian笛卡尔积

val rdd1 = sc.parallelize(List("tom", "jerry"))
val rdd2 = sc.parallelize(List("tom", "kitty", "shuke"))
val rdd3 = rdd1.cartesian(rdd2)

###################################################################################################

#spark action

val rdd1 = sc.parallelize(List(1,2,3,4,5), 2)

#collect

rdd1.collect

#reduce

val rdd2 = rdd1.reduce(_+_)

#count

rdd1.count

#top  按升序后取前两个

rdd1.top(2)

#take  取前两个

rdd1.take(2)

#first(similer to take(1)) 取第一个

rdd1.first

#takeOrdered 按照某个规则排序后取前三个

rdd1.takeOrdered(3)

四、高级算子

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

map是对每个元素操作, mapPartitions是对其中的每个partition操作

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
mapPartitionsWithIndex : 把每个partition中的分区号和对应的值拿出来
val func = (index: Int, iter: Iterator[(Int)]) => {
  iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func).collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
aggregate   先把分区里的数据聚合后  在把每个分区聚合后的数据 在聚合

def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {

  iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func1).collect
###是action操作, 第一个参数是初始值, 二:是2个函数[每个函数都是2个参数(第一个参数:先对个个分区进行合并, 第二个:对个个分区合并后的结果再进行合并), 输出一个参数]
###0 + (0+1+2+3+4   +   0+5+6+7+8+9)
rdd1.aggregate(0)(_+_, _+_)
rdd1.aggregate(0)(math.max(_, _), _ + _)
###5和1比, 得5再和234比得5 --> 5和6789比,得9 --> 5 + (5+9)
rdd1.aggregate(5)(math.max(_, _), _ + _)

val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2)
def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = {
  iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator
}
rdd2.aggregate("")(_ + _, _ + _)
rdd2.aggregate("=")(_ + _, _ + _)

val rdd3 = sc.parallelize(List("12","23","345","4567"),2)

rdd3.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y)

val rdd4 = sc.parallelize(List("12","23","345",""),2)

rdd4.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

val rdd5 = sc.parallelize(List("12","23","","345"),2)

rdd5.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
aggregateByKey

val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2)

def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {
  iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator
}
pairRDD.mapPartitionsWithIndex(func2).collect
pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect
pairRDD.aggregateByKey(100)(math.max(_, _), _ + _).collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
checkpoint
sc.setCheckpointDir("hdfs://node-1.itcast.cn:9000/ck")
val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
rdd.checkpoint
rdd.isCheckpointed
rdd.count
rdd.isCheckpointed
rdd.getCheckpointFile

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
coalesce, repartition
val rdd1 = sc.parallelize(1 to 10, 10)
val rdd2 = rdd1.coalesce(2, false)
rdd2.partitions.length

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
collectAsMap : Map(b -> 2, a -> 1)
val rdd = sc.parallelize(List(("a", 1), ("b", 2)))
rdd.collectAsMap

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
combineByKey : 和reduceByKey是相同的效果
###第一个参数x:原封不动取出来, 第二个参数:是函数, 局部运算, 第三个:是函数, 对局部运算后的结果再做运算
###每个分区中每个key中value中的第一个值, (hello,1)(hello,1)(good,1)-->(hello(1,1),good(1))-->x就相当于hello的第一个1, good中的1
val rdd1 = sc.textFile("hdfs://master:9000/wordcount/input/").flatMap(_.split(" ")).map((_, 1))
val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd1.collect
rdd2.collect

###当input下有3个文件时(有3个block块, 不是有3个文件就有3个block, ), 每个会多加3个10

val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd3.collect

val rdd4 = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)
val rdd6 = rdd5.zip(rdd4)
val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
countByKey 

val rdd1 = sc.parallelize(List(("a", 1), ("b", 2), ("b", 2), ("c", 2), ("c", 1)))

rdd1.countByKey
rdd1.countByValue

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
filterByRange

val rdd1 = sc.parallelize(List(("e", 5), ("c", 3), ("d", 4), ("c", 2), ("a", 1)))

val rdd2 = rdd1.filterByRange("b", "d")
rdd2.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
flatMapValues  :  Array((a,1), (a,2), (b,3), (b,4))
val rdd3 = sc.parallelize(List(("a", "1 2"), ("b", "3 4")))
val rdd4 = rdd3.flatMapValues(_.split(" "))
rdd4.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
foldByKey 

val rdd1 = sc.parallelize(List("dog", "wolf", "cat", "bear"), 2)

val rdd2 = rdd1.map(x => (x.length, x))
val rdd3 = rdd2.foldByKey("")(_+_)

val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1))

rdd.foldByKey(0)(_+_)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
foreachPartition  分别对每个分区下的数据进行操作
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)
rdd1.foreachPartition(x => println(x.reduce(_ + _)))

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
keyBy : 以传入的参数做key 
val rdd1 = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
val rdd2 = rdd1.keyBy(_.length)
rdd2.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
keys拿到所有的key     values  拿到所有的value
val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
val rdd2 = rdd1.map(x => (x.length, x))
rdd2.keys.collect
rdd2.values.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

五、分区

写一个类 继承 Partitioner  重写 以下两个方法

//总共分几个区override def numPartitions: Int = 0//将对应的key分到哪个分区里override def getPartition(key: Any): Int = 0

分区应用demo

oobject UrlCountPartitioner {  def main(args: Array[String]): Unit = {    val config=new SparkConf().setAppName("urlcount").setMaster("local");    val sc=new SparkContext(config);    val logfile=sc.textFile("E:\\BaiduYunDownload\\day29\\itcast.log").map(      x=>{        val message=x.split("\t")(1);        //("www.java.com",1),("www.net.com",1),("www.php.com",1).....        (message,1)      }).reduceByKe    val aa=logfile.map(x=>{      val host=new URL(x._1).getHost;      (host,(x._1,x._2));    });    //获取所有学院的数量  后面分区用  不同学院分到不同分区    val bb=aa.map(_._1).distinct().collect();    //创建一个自定义分区    val mypartion=new MyPartitioner(bb);    //应用自定义分区   mapPartitions对分区里的数据进去操作    aa.partitionBy(mypartion).mapPartitions(it=>{      it.toList.sortBy(_._2._2).reverse.iterator    }).saveAsTextFile("d://out6")    sc.stop();  }
class MyPartitioner(partion:Array[String]) extends  Partitioner{    val map=new mutable.HashMap[String,Int]();    var count=0;    for(i <-partion){        map +=(i -> count);        count +=1;    }    override def numPartitions: Int = partion.length;    override def getPartition(key: Any): Int ={      println("key==="+key.toString)      map.getOrElse(key.toString,0);    };  }}

六、自定义排序

自定义个一个类 继承Ordered  重写compare方法

object OrderContext {

  implicit val girlOrdering  = new Ordering[Girl] {
    override def compare(x: Girl, y: Girl): Int = {
      if(x.faceValue > y.faceValue) 1
      else if (x.faceValue == y.faceValue) {
        if(x.age > y.age) -1 else 1
      } else -1
    }
  }
}

/**
  * Created by root on 2016/5/18.
  */
//sort =>规则 先按faveValue,比较年龄
//name,faveValue,age

object CustomSort {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("CustomSort").setMaster("local[2]")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List(("yuihatano", 90, 28, 1), ("angelababy", 90, 27, 2),("JuJingYi", 95, 22, 3)))
    import OrderContext._
    val rdd2 = rdd1.sortBy(x => Girl(x._2, x._3), false)
    println(rdd2.collect().toBuffer)
    sc.stop()
  }

}

/**

  * 第一种方式
  * faceValue
  * age

case class Girl(val faceValue: Int, val age: Int) extends Ordered[Girl] with Serializable {

  override def compare(that: Girl): Int = {
    if(this.faceValue == that.faceValue) {
      that.age - this.age
    } else {
      this.faceValue -that.faceValue
    }
  }
}
  */

/**

  * 第二种,通过隐式转换完成排序
  * faceValue
  * @param age
  */
case class Girl(faceValue: Int, age: Int) extends Serializable

七、缓存

//把读出来的数据缓存到内存val result1=sc.textFile("D:\\word.txt").cache()//释放内存result1.unpersist(true)

spark 缓存级别

        val NONE = new StorageLevel(false, false, false, false)

  val DISK_ONLY = new StorageLevel(true, false, false, false)
  val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
  val MEMORY_ONLY = new StorageLevel(false, true, false, true)
  val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
  val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
  val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
  val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
  val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
  val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
  val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
  val OFF_HEAP = new StorageLevel(false, false, true, false)

spark checkpoint  数据保存点

spark 会先从内存中读取数据 如果内存没有会从checkpoint 设置的报存目录读取数据

//设置数据保存的地方sc.setCheckpointDir("hdfs://node11:9000/")//给result1   rdd的数据内容保存起来 val result1=sc.textFile("D:\\word.txt").checkpoint()

八、SparkSql

1、spark-shell 编写sparksql步骤

//1.读取数据,将每一行的数据使用列分隔符分割

val lineRDD = sc.textFile("hdfs://node1.itcast.cn:9000/person.txt", 1).map(_.split(" "))

//2.定义case class(相当于表的schema)

case class Person(id:Int, name:String, age:Int)

//3.导入隐式转换,在当前版本中可以不用导入

import sqlContext.implicits._

//4.将lineRDD转换成personRDD

val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))

//5.将personRDD转换成DataFrame

val personDF = personRDD.toDF

6.对personDF进行处理

#(SQL风格语法)
personDF.registerTempTable("t_person")
sqlContext.sql("select * from t_person order by age desc limit 2").show
sqlContext.sql("desc t_person").show
val result = sqlContext.sql("select * from t_person order by age desc")

7.保存结果

result.save("hdfs://hadoop.itcast.cn:9000/sql/res1")
result.save("hdfs://hadoop.itcast.cn:9000/sql/res2", "json")

#以JSON文件格式覆写HDFS上的JSON文件

import org.apache.spark.sql.SaveMode._
result.save("hdfs://hadoop.itcast.cn:9000/sql/res2", "json" , Overwrite)

8.重新加载以前的处理结果(可选)

sqlContext.load("hdfs://hadoop.itcast.cn:9000/sql/res1")
sqlContext.load("hdfs://hadoop.itcast.cn:9000/sql/res2", "json")

2、代码方式编写sparksql

package cn.itcast.spark.sqlimport org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.sql.SQLContext object InferringSchema {  def main(args: Array[String]) {    //创建SparkConf()并设置App名称     val conf = new SparkConf().setAppName("SQL-1")    //SQLContext要依赖SparkContext     val sc = new SparkContext(conf)    //创建SQLContext     val sqlContext = new SQLContext(sc)    //从指定的地址创建RDD     //文件内容 1,zhangsan,10     //2,lisi,20     val lineRDD = sc.textFile(args(0)).map(_.split(" "))    //创建case class     //将RDD和case class关联     val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))    //导入隐式转换,如果不导入无法将RDD转换成DataFrame     //将RDD转换成DataFrame     import sqlContext.implicits._    val personDF = personRDD.toDF    //注册表     personDF.registerTempTable("t_person")    //传入SQL     val df = sqlContext.sql("select * from t_person order by age desc limit 2")    //将结果以JSON的方式存储到指定位置     df.write.json(args(1))    //df.show()  显示结果    //停止Spark Context     sc.stop()  }}//case class一定要放到外面 case class Person(id: Int, name: String, age: Int)

3   从MySQL中加载数据(Spark Shell方式)

1.启动Spark Shell,必须指定mysql连接驱动jar包

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell \

--master spark://node1.itcast.cn:7077 \

--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar

2.从mysql中加载数据

val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.10.1:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()

3.执行查询

jdbcDF.show()

4   将数据写入到MySQL中(打jar包方式)

package cn.itcast.spark.sql  import java.util.Properties  import org.apache.spark.sql.{SQLContext, Row}  import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType}  import org.apache.spark.{SparkConf, SparkContext}  object JdbcRDD {  def main(args: Array[String]) {    val conf = new SparkConf().setAppName("MySQL-Demo")    val sc = new SparkContext(conf)    val sqlContext = new SQLContext(sc)    //通过并行化创建RDD     val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" "))    //通过StructType直接指定每个字段的schema     val schema = StructType(      List(        StructField("id", IntegerType, true),        StructField("name", StringType, true),        StructField("age", IntegerType, true)      )    )    //将RDD映射到rowRDD     val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))    //将schema信息应用到rowRDD上     val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)    //创建Properties存储数据库相关属性     val prop = new Properties()    prop.put("user", "root")    prop.put("password", "123456")    //将数据追加到数据库     personDataFrame.write.mode("append").jdbc("jdbc:mysql://192.168.10.1:3306/bigdata", "bigdata.person", prop)    //停止SparkContext     sc.stop()  }}

 

1.用maven将程序打包

2.将Jar包提交到spark集群

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \

--class cn.itcast.spark.sql.JdbcRDD \

--master spark://node1.itcast.cn:7077 \

--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

/root/spark-mvn-1.0-SNAPSHOT.jar

九、sparksql和hive结合

1、创建hive的元数据的表  修改hive表的编码

alter database hive character set latin1;

ALTER TABLE hive.* DEFAULT CHARACTER SET latin1;

2.安装hive

忽略

3.将配置好的hive-site.xml,hdfs-site.xml,core-site.xml 放入$SPARK-HOME/conf目录下

4.启动spark-shell时指定mysql连接驱动位置

bin/spark-shell \
 --master spark://node11:7077 \
 --executor-memory 1g \
 --total-executor-cores 2 \
 --driver-class-path /usr/local/apache-hive-0.13.1-bin/lib/mysql-connector-java-5.1.35-bin.jar 

5.使用sqlContext.sql调用HQL

sqlContext.sql("select * from spark.person limit 2")

或使用org.apache.spark.sql.hive.HiveContext

import org.apache.spark.sql.hive.HiveContext
val hiveContext = new HiveContext(sc)
hiveContext.sql("select * from spark.person")

十、SparkStreaming 

1、第一sparkStreaming  wordcount 处理每一批次的数据     处理局部数据

object StreamingWordCount {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("StreamingWordCount").setMaster("local[2]")
    val sc = new SparkContext(conf)

//每隔5秒 处理一次数据

    val ssc = new StreamingContext(sc, Seconds(5))
    //接收数据监听 172.16.0.11:8888 (数据来源)
    val ds = ssc.socketTextStream("172.16.0.11", 8888)
    //DStream是一个特殊的RDD
    //hello tom hello jerry
    val result = ds.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
    //打印结果
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

2、sparkStreaming  处理全局变量    wordcount累加

object StateFulWordCount {

//String 某个单词

  //Seq这个批次某个单词的次数
  //Option[Int]:以前的结果

  //分好组的数据

  val updateFunc = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
    //iter.flatMap(it=>Some(it._2.sum + it._3.getOrElse(0)).map(x=>(it._1,x)))
    //iter.map{case(x,y,z)=>Some(y.sum + z.getOrElse(0)).map(m=>(x, m))}
    //iter.map(t => (t._1, t._2.sum + t._3.getOrElse(0)))
 iter.map{case(word, current_count, history_count) => (word, current_count.sum + history_count.getOrElse(0)) }
  }

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("StateFulWordCount").setMaster("local[2]")
    val sc = new SparkContext(conf)
    //updateStateByKey必须设置setCheckpointDir
    sc.setCheckpointDir("c://ck")
    val ssc = new StreamingContext(sc, Seconds(5))

    val ds = ssc.socketTextStream("172.16.0.11", 8888)

    //hello tom hello jerry
val result = ds.flatMap(_.split(" ")).map((_, 1)).updateStateByKey(updateFunc, new HashPartitioner(sc.defaultParallelism), true)

    result.print()

    ssc.start()

    ssc.awaitTermination()

  }

}

3、SparkStreaming 和flume结合  fluem版本要和SparkStreaming对应 这里都是采用1.6.1

(1)、flume向SparkStreaming push数据   这种方式用的不多 数据只能交给一台SparkStreaming处理

SparkStreaming代码

object FlumePushWordCount {

  def main(args: Array[String]) {

    val host = “192.168.1.105”
    val port = 8888
    val conf = new SparkConf().setAppName("FlumeWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(conf, Seconds(5))
    //推送方式: flume向spark发送数据   flume配置文件中sink 配置的ip和端口
    val flumeStream = FlumeUtils.createStream(ssc, host, port)
    //flume中的数据通过event.getBody()才能拿到真正的内容
    val words = flumeStream.flatMap(x => new String(x.event.getBody().array()).split(" ")).map((_, 1))

    val results = words.reduceByKey(_ + _)

    results.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

 编写一个flume agent的配置文件 flume-push.conf 内容如下

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# source

a1.sources.r1.type = spooldir

#监控该目录下的文件

a1.sources.r1.spoolDir = /usr/local/java/log
a1.sources.r1.fileHeader = true

# sink

a1.sinks.k1.type = avro
#这是接收方  运行sparkStreaming 机器ip
a1.sinks.k1.hostname = 192.168.1.105

#  运行sparkStreaming 机器端口

a1.sinks.k1.port = 8888

#  memory

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

先启动sparkstreaming再启动 flume

bin/flume-ng agent -n a1 -c conf -f conf/flume-push.conf

(2)、SparkStreaming 从flume中 pull数据  可以由多台SparkStreamming处理数据

把如下三个jar包放到 flume_home/lib下

172937_njAy_2995717.png

 编写一个flume agent的配置文件 flume-poll.conf 内容如下

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# source

a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/java/log
a1.sources.r1.fileHeader = true

# Describe the sink  用SparkStreaming提供的 sink

a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink

#flume 的ip地址  sparkstreaming会从这个ip上的flume拉去数据

a1.sinks.k1.hostname = 192.168.52.138
a1.sinks.k1.port = 8888

# Use a channel which buffers events in memory

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动flume

bin/flume-ng agent -n a1 -c conf -f conf/flume-poll.conf

sparkStreamming 代码

object StreamingFlumePull {  val  func=(it:Iterator[(String, Seq[Int], Option[Int])]) => {   it.map(x=>(x._1,x._2.sum+x._3.getOrElse(0)))  }  def main(args: Array[String]): Unit = {    val conf=new SparkConf().setAppName("StreamingFlumePull").setMaster("local[2]");    val sc=new SparkContext(conf);    sc.setCheckpointDir("c://ck")    val ssc=new StreamingContext(sc,Seconds(5));    //可以有多台sparkStreaming来处理flume产生的数据  下面是flume的ip和端口    val address = Seq(new InetSocketAddress("192.168.52.138", 8888))    val flumeData=FlumeUtils.createPollingStream(ssc,address,StorageLevel.MEMORY_AND_DISK);    val words=flumeData.flatMap(x=>{    new String(x.event.getBody.array()).split(" ")    }).map((_,1))    val result=words.updateStateByKey(func,new HashPartitioner(sc.defaultParallelism),true)    result.print();    ssc.start();    ssc.awaitTermination();  }}

4、sparkstreaming 和kafka结合     非直连方式  通过receviver方式从kafka 的broker中消费数据   此方式 会一直从broker中消费数据 会产生在这一段时间内拉取得数据量大于work的内存

(1)、启动kafka   

/bin/kafka-server-start.sh  /usr/local/java/kafka/config/server.properties &

(2)、创建topic

bin/kafka-topics.sh --create --zookeeper node22:2181,node33:2181,node44:2181 --replication-factor 1 --partitions 1 --topic sparkstreaming

(3)、生产数据

bin/kafka-console-producer.sh --broker-list node11:9092,node22:9092,node33:9092  --sync --topic sparkstreaming

(5)、sparkstreaming代码

object KafkaWordCount {

  val updateFunc = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {

    //iter.flatMap(it=>Some(it._2.sum + it._3.getOrElse(0)).map(x=>(it._1,x)))
    iter.flatMap { case (x, y, z) => Some(y.sum + z.getOrElse(0)).map(i => (x, i)) }
  }
  def main(args: Array[String]) {

    //zookeeper地址

    val zkQuorm="node22:2181,node33:2181,node44:2181";

 //消费组

    val groupId="sparkgroup";

//消费主题

    val topics="sparkstreaming";

    val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")

    val ssc = new StreamingContext(sparkConf, Seconds(5))
    ssc.checkpoint("c://ck2")
    //"alog-2016-04-16,alog-2016-04-17,alog-2016-04-18"
    //"Array((alog-2016-04-16, 2), (alog-2016-04-17, 2), (alog-2016-04-18, 2))"

//numThreads  表示有几个线程来消费topic里的数据

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val data = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap, StorageLevel.MEMORY_AND_DISK_SER)

//kafka过来的数据是key value的形式  只取value做处理(_._2)

    val words = data.map(_._2).flatMap(_.split(" "))
    val wordCounts = words.map((_, 1)).updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
    ssc.start()
    ssc.awaitTermination()
  }
}

十一、sparkstreaming窗口函数  用于计算某段时间的数据

object WindowOpts {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("WindowOpts").setMaster("local[2]")
    val ssc = new StreamingContext(conf, Milliseconds(5000))
    val lines = ssc.socketTextStream("172.16.0.11", 9999)
    val pairs = lines.flatMap(_.split(" ")).map((_, 1))

//reduceByKeyAndWindow 方法中的三个参数

//(a:Int,b:Int) => (a + b)  对数据进行相加操作

//Seconds(15)  计算15秒内的数据   这个时间必须是 产生批次时间的整数倍  (上面的Milliseconds(5000))

//Seconds(10))  每隔10秒计算一次  

    val windowedWordCounts = pairs.reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Seconds(15), Seconds(10))
    //Map((hello, 5), (jerry, 2), (kitty, 3))
    windowedWordCounts.print()
//    val a = windowedWordCounts.map(_._2).reduce(_+_)
//    a.foreachRDD(rdd => {
//      println(rdd.take(0))
//    })
//    a.print()
//    //windowedWordCounts.map(t => (t._1, t._2.toDouble / a.toD))
//    windowedWordCounts.print()
//    //result.print()
    ssc.start()
    ssc.awaitTermination()
  }

转载于:https://my.oschina.net/xiaozhou18/blog/864620

你可能感兴趣的文章